مزایای استفاده از ضریب هم بستگی
مقدمه: وجود نیروهای انسانی متعهد به سازمان در هر سازمان ضمن کاهش غیبت، تاخیر و جابجایی، باعث افزایش چشمگیر عملکرد سازمان، نشاط روحی کارکنان و تجلی بهتر اهداف متعالی سازمان و نیز دستیابی به اهداف فردی خواهد شد. عدم احساس تعهد و تعهد سطح پایین، نتایج منفی را برای فرد و سازمان به دنبال دارد؛ از جمله نتایج، ترک خدمت، غیبت زیاد، بی میلی به ماندن در سازمان، کاهش اعتماد مشتریان و کاهش درآمد می باشد. بنابراین تعهد به سازمان در کارکنان بیمارستان که در راستای تولید محصولی بنام "حفظ، بازگشت و ارتقای سلامت انسانها" گام بر می دارند اهمیت ویژه ای پیدا می کند. هدف پژوهش حاضر تعیین رابطه جو سازمانی و تعهد سازمانی کارکنان و مدیران بود که یک سازمان را از سازمان دیگر متمایز می سازد. روش پژوهش: این پژوهش به روش مقطعی انجام شده است. جامعه پژوهش کلیه مدیران و کارکنان بیمارستان های آموزشی دانشگاه علوم پزشکی همدان (اکباتان، بعثت، فرشچیان و مباشر کاشانی) بوده است. تعداد نمونه با استفاده از فرمول نمونه گیری تصادفی 137 نفر محاسبه گردید. دامنه زمانی پژوهش اسفندماه 1386 و بهار 1387 بوده است. داده ها با استفاده از سه پرسشنامه تعهد سازمانی، جو سازمانی و ویژگیهای فردی جمع آوری شده و با استفاده از آزمون های ضریب همبستگی گشتاوری پیرسون و آزمون t، آزمون کای دو، رگرسیون چند متغیره، آزمون ANOVA تحلیل شده است. یافتهها: جو سازمانی تأثیر مثبت و معنی داری بر تعهد سازمانی کارکنان و مدیران دارد. از بین مؤلفه های جو سازمانی، روحیه گروهی، صمیمیت، علاقمندی، ملاحظه گری و نفوذ و پویایی رابطه مثبت و مزاحمت و تأکید بر تولید رابطه معکوس و معنی داری با تعهد سازمانی دارند. کلیه ابعاد تعهد سازمانی (عاطفی، مستمر و هنجاری) نیز رابطه مثبت و معنی داری با جو سازمانی دارند. نتیجهگیری: بر اساس یافته های پژوهش حاضر، بهبود در جو سازمانی می تواند باعث افزایش تعهد کارکنان و مدیران به سازمان شود و می تواند پیوسته منجر به حفظ توانایی ها و مزایای رقابتی سازمان گردد.
مقاله کنفرانس
روش ساده احتمالاتی مونت کارلو در تحلیل پایداری شیبها جهت آنالیز حساسیت از طریق تعیین ضریب تغییرات پارامترها
چکیده:
علیرغم نامعینی های موجود در مسائل تحلیل شیروانی ها وبا وجود مزایای استفاده از تحلیل احتمالاتی اعتراف می کنیم که بکار گیری چنین تکنیک هایی کم می باشد . یکی از روش های احتمالاتی شبیه سازی مونت کارلو می باشد که در تحلیل پایداری شیبها کاربرد دارد در این تحقیق یک شیروانی باهندسه مشخص و پارامترهای ورودی با توزیع نرمال معرفی گشته و با در نظر گرفتن روشهای متداول تعادل حدی تحلیل احتمالاتی مونت کارلو انجام و آنالیز حساسیت روی تک تک پارامترها تنها از طریق بررسی ضریب تغییرات آنها انجام می شود . همچنین تاثیر عدم قطعیت هر پارامتر روی نتیجه نهایی بدست می آید نتیجه مهمی که از آن برداشت می شود این است که ضریب اطمینان نسبت به پراکندگی پارامتر φ بسیار حساس تر ازc,γ میباشد ولی این نتیجه همیشه صادق نیست زیرا هنگامی که میانگین مقدارφ ( درجه ) از لحاظ عددی نسبت به ( kpa ) c خیلی کوچکتر باشد به تبع آن ضریب تغییرات هر چه بزرگ هم باشد اثرات پراکندگی c بیشتر خواهد بود اما در شرایطی که این پارامتر ها به لحاظ نسبی اختلاف کمی داشته باشند اثرات پراکندگی φ بیشتر می باشد ونیز مشخص می شود که با افزایش شیب شیروانی که احتمال گسیختگی نیز افزایش پیدا می کند تغییرات φ در پراکندگی FOS تاثیر کمتری نسبت به حالتی که شیب ملایمتر است خواهد داشت در حالی که برای دو پارامتر c,γ قضیه بر عکس می باشد . با فرض اینکه پارامترهای مقاومتی وابسته یا غیر وابسته هستند مشخص می گردد که تحلیل احتمالاتی متاثر از این فرض بوده و با وجود اینکه میانگین مقدار ضریب اطمینان مربوط به توزیع نرمال در هر دوی آنها اختلاف ناچیزی دارند ولی در حالت پارامترهای مقاومتی غیر وابسته ، انحراف از معیاری که برای توزیع نرمال ضرایب اطمینان محاسبه می شود تقریبا 1/6 برابر انحراف از معیار مربوط به تحلیل احتمالاتی با ضریب همبستگی -0/7 می باشد، بنابراین اگر به درستی بنا به تحقیقات انجام یافته وابستگی پارامترهای مقاومتی وجود داشته باشد فرض غیر وابستگی پارامترها احتمال گسیختگی را افزایش می دهد
روش ساده احتمالاتی مونت کارلو در تحلیل پایداری شیبها جهت آنالیز حساسیت از طریق تعیین ضریب تغییرات پارامترها 3/20/2008 12:00:00 AM
» مزایای استفاده از همبستگی ارزها RoboForex
مزایای استفاده از همبستگی ارزها RoboForex: معاملهگران معمولا از همبستگی ارزها برای معاملات بین بازاری، پوشش ریسک یک معامله یا تنوع دادن به پرتفوی خود و مقابله با ریسک، استفاده میکنند.
معاملات بینبازاری
شناسایی بازارهایی که با هم نسبت نزدیکی دارند میتواند سودمند باشد زیرا اگر الگوها در یک بازار شفافیت نداشته باشند، الگوهای شفافتری را میتوان در یک بازار دیگر استفاده کرد تا به معاملهگان برای ثبت معاملات در بازار اول، کمک کرد.
برای افتتاح حساب در بروکر روبو فارکس roboforex اینجا را کلیک کنید.
بازار کالاها مخصوصا میتواند برای همبستگی مفید باشد و یک مثال از معاملات بین بازاری جهتارز USD/CAD و نفت میباشد (مزایای استفاده از همبستگی ارزها RoboForex).
پوشش ریسک یک معامله
پوشش ریسک یک معامله نیز یک دلیل دیگر برای استفاده از همبستگی ارزها میباشد (مزایای استفاده از همبستگی ارزها RoboForex).
اگر شما پیشبینی میکنید که قیمت دلار استرالیا افزایش پیدا خواهد کرد و بخواهید AUD/USD بخرید، پس خرید USD/CHF در کنار آن برای پوشش مقداری از ریسک دلار آمریکا میتواند حرکت عاقلانهای باشد.
در زمان پوشش ریسک، مقادیر پوینت و پیپ متفاوت میتواند برای معاملهگر مزیت محسوب شود (مزایای استفاده از همبستگی ارزها RoboForex).
برای افتتاح حساب در بروکر روبو فارکس roboforex اینجا را کلیک کنید.
تنوعدادن به پرتفوی و ریسک
معاملهگران همینطور میتوانند از همبستگی ارزی مزایای استفاده از ضریب هم بستگی برای تنوع دادن به پرتفوی خود و همینطور متنوعسازی ریسک استفاده کنند (مزایای استفاده از همبستگی ارزها RoboForex).
اندازه گیری استراتژی معاملاتی با ضریب تعیین-R square
ممکن است تا کنون اسم ضریب تعیین یا square R را نشنیده باشید. البته در اکثر وبسایت ها بیشتر درباره ی مفاهیمی مانند حمایت، مقاومت و نمودارها صحبت شده و کمتر به اندیکاتورهای آبجکتیو اشاره شده است.
موضوعی که قرار است درباره آن صحبت کنیم بر پایه ریاضیات و آمار است اما من می خواهم امروز با شما به روش های عملی و کاربردی تر صحبت کنم.
ضریب تعیین چیست؟
این ضریب یک ضریب تعیین آماری است که به عنوان R2 نیز شناخته شده است. ضریب تعیین آماری به ما اجازه می دهد تا برخی از نتایج و یا فرضیه های خود را آزمایش کنیم.
به عبارت دیگر، زمانی که ما مدل آماری خود را آنالیز می کنیم، ضریب تعیین، آمار بازده مدل ارائه شده ما را تعیین می کند و اطلاعاتی درباره درصد یا نسبت نتایج گوناگونی که به وسیله ی مدل مورد نظر بدست می آیند را، دسته بندی می کند. برای استفاده از این ضریب باید درک خوبی از دو مفهوم داشته باشید:
رگرسیون خطی
در آمار ، رگرسیون خطی که به آن وابستگی خطی نیز گفته می شود ، یک مدل ریاضی است که برای تقریب رابطه ی وابستگی بین یک متغیر وابسته (به عنوان مثال Y)، متغیرهای مستقل (X1 ، X2 ، X3 ، ǐ.Xn) و یک فاکتور تصادفی ɛ (همراه با هر فرایندی که نتیجه آن فقط در مداخله شانس قابل پیش بینی است) استفاده می شود.
ضریب همبستگی پیرسون
این مزایای استفاده از ضریب هم بستگی مزایای استفاده از ضریب هم بستگی ضریب، اندازه گیری خطی درجه ارتباط بین دو متغیر تصادفی کمی که قابل اندازه گیری باشند را برعهده دارد.
حال ممکن است این سوال به ذهن شما برسد که چگونه می توانید از این مفاهیم برای ارزیابی سیستم معاملاتی خود استفاده کنید؟
میزان اثربخشی هر استراتژی یا سیستم تجاری با ارزیابی و آنالیز کردن آن مشخص می شود.
برای دستیابی به این هدف ، می توان از طیف گسترده ای از نسبت ها در زمینه روند محاسباتی و تفسیرها استفاده کرد اما توجه داشته باشید که با وجود تنوع زیاد، تنها معیارهای کیفی بسیار کمی برای ارزیابی وجود دارد اما در این میان باید همیشه به یک نکته بسیار مهم توجه کنید:
قانون مند بودن خط تعادل سیستم یا استراتژی معاملاتی .
به همین دلیل بهتر است ابتدا با استفاده از مدیریت ضریب تعیین، لاین صعودی مستقیمی که همه معامله گران منتظر دیدن نتایج آن هستند را به صورت کمی تخمین بزنیم.
مشخصات معیار ارزیابی سیستم های معاملاتی
هر معیار یا نسبت مورد استفاده برای ارزیابی اثربخشی یا کارایی سیستم معاملاتی محدودیت های کاربردی دارد.
هیچ معیار ایده آل یا از پیش تعیین شده ای وجود ندارد که به ما اجازه دهد با اطمینان کامل قدرت سیستم معاملاتی را تعیین کنیم.
با این حال ، برخی از خواص یا ویژگی های تعیین شده باید دارای خصوصیات زیر باشند:
در ارتباط با مدت دوره آزمایشی به صورت مستقل عمل کنند: بسیاری از پارامترهای استراتژی یا سیستم معاملات ی به مدت دوره آزمایشی بستگی دارد.
به عنوان مثال: هرچه دوره آزمایش برای یک استراتژی سودمند طولانی تر باشد، میزان سود خالص شما نیز بیشتر خواهد شد.
داشتن عملکردی مستقل در این دوره برای مقایسه تأثیر استراتژی های مختلف در بازه های زمانی گوناگون، بسیار اهمیت دارد.
استقلال نقطه پایانی در آزمایش
برای مثال، اگر استراتژی شما فراتر از ضرر شما پیش برود، نقطه پایانی آزمایش می تواند نقش تعیین کننده ای در تعادل سیستم داشته باشد.
به همین دلیل باید توجه داشته باشید که اندیکاتور شما در دام چنین سیستمی نیفتد و بتواند تصویر واضحی از سیستم معاملاتی شما ارائه دهد.
سادگی در تفسیر
تمام اندیکاتورهای سیستم باید کمی باشند و در انتها عددی را به شما نشان دهند.
بنابراین قابل درک بودن این عدد بسیار مهم است، هرچه تفسیر ارزش بدست آمده راحت تر باشد، درک پارامترها آسان تر می شود.
همچنین، توجه داشته باشید که در چنین موقعیت هایی، ارزش تعیین شده توسط اندیکاتور باید در بازه زمانی مشخص، بدست بیاد.
نتایج بدست آمده بوسیله معاملات در حجم کم: این شرط، احتمالاً پیچیده ترین شرط لازم برای گرفتن نتایج مربوط به لیست ویژگی ها جهت تشخیص یک سیستم معاملاتی مناسب است زیرا همه روش های آماری به تعداد اندازه گیری ها بستگی دارد.
هرچه تعداد این اندازه گیری ها بیشتر باشد، آمار بدست آمده پایدارتر است. طبیعتاً، حل کامل یک مشکل در یک نمونه کوچک غیرممکن است اما می توانید با استفاده از راهکارهای موثر، اثراتی را که به دلیل کمبود داده ایجاد می شوند ، متعادل تر کنید.
اپلیکیشن رگرسیون خطی
برای محاسبه ضریب تعیین، باید رگرسیون خطی مزایای استفاده از ضریب هم بستگی را محاسبه کنیم. همانطور که در بالا توضیح داده شد ، ممکن است چندین متغیر مستقل وجود داشته باشند، با این حال برای درک بهتر، ما از ساده ترین حالت استفاده خواهیم کرد: یک متغیر مستقل منفرد.
درباره یک متغیر مستقل، نسبت رگرسیون خطی یا وابسته به متغیر وابسته (Y) به یک متغیر مستقل (X) را میتوان با فرمول زیر مطرح کرد:
این فرمول به صورت گرافیکی، خطی را در صفحه XY نشان می دهد ، از این رو رگرسیون خطی نامگذاری شده است.
حال پلتفرم معاملاتی خود را براساس جفت ارز مورد نظر، در یک روند صعودی و بازه زمانی مشخص در نظر بگیرید. اطلاعات و دیتاها را دانلود و ذخیره کنید و سپس، نمودار خود را با قیمت های انتخابی در فضای اکسل رسم کنید.
در محور عمودی Y، قیمت های بسته شده در معاملات را قرار دهید و در محور افقی، تاریخ را با شماره سفارش جایگزین کنید ( برای راحتی کار: 1،2، 3…) با این کار، نموداری با یک روند صعودی خواهیم داشت که باید میزان کمی روند آن را تفسیر کنیم.
آسان ترین راه برای رسیدن به هدف، کشیدن خطی است که با دقت بیشتری بر روند نمودار، منطبق شود.
این خط، خط رگرسیون است. اگر گرافیک کاملاً یکنواخت باشد می توان یک یا چند خط مستقیم ترسیم کرد که متناسب با گرافیک صعودی ما باشد.
حال سوال اینجاست: کدام یک از این خطوط درست است؟ خط صحیح همان خط مستقیمی است که مجموع فاصله نقاط موجود تا خط، حداقل فاصله باشد.
یادآوری این نکته نیز مهم است که خط رگرسیون باید همیشه از مرکز ثقل تمام داده های تشکیل دهنده عبور کند. مختصات این نقطه ثقل بر روی محور x ، میانگین متغیر x است و در محور y ، میانگین متغیر y خواهد بود.
با دانستن یک نقطه از خط می توان از معادله نقطه شیب، برای تعیین معادله خط استفاده کرد.
با بدست آوردن خط صحیح می توان ضرایب رگرسیون خطی را محاسبه مزایای استفاده از ضریب هم بستگی کرد.
ضریب همبستگی پیرسون
پس از محاسبه رگرسیون خطی ، باید همبستگی بین خط به دست آمده در بالا و داده هایی را که خط بر اساس آن تعیین شده است ، محاسبه کنیم. بیاد داشته باشیم که همبستگی، رابطه آماری بین دو متغیر تصادفی است.
این همبستگی می تواند بین 1- تا 1+ در نوسان باشد. مقدار نزدیک به صفر به این معنی است که هیچ رابطه ای بین مقادیر اندازه گیری شده وجود ندارد ، مقدار 1+ (یا بسیار نزدیک به آن) به معنی رابطه مستقیم متغیرها و مقدار 1- (یا بسیار نزدیک به آن) به معنای وجود رابطه معکوس بین متغیرها است.
ضریب همبستگی پیرسون را می توان با استفاده از فرمول زیر محاسبه کرد:
- XY – کوواریانس (X، Y) است
- X: انحراف استاندارد متغیر X است
- Y: انحراف معیار متغیر Y است
کوواریانس مقداری است که میزان تغییرات مشترک دو متغیر تصادفی را با توجه به میانگین آنها نشان می دهد. به عبارت دیگر، واریانس مشترک بین متغیرها است و انحراف معیار، ضریب تعیین واریانس است.
ضریب همبستگی پیرسون نشان می دهد که خط تا چه حد داده ها را توصیف می کند.
اگر نقاط داده از خط فاصله زیادی داشته باشند ، نشان دهنده وجود پراکندگی زیاد و همبستگی کم است و برعکس، اگر نقاط داده در فاصله کمی از خط باشند ، پراکندگی کم و همبستگی زیاد است.
مقدار صفر نشان دهنده این است که هیچ ارتباطی بین رگرسیون خطی و داده ها وجود ندارد.
نکته مهم در متاتریدر ، معیاری به نام همبستگی LR است که همبستگی بین خط تعادل و رگرسیون خطی برای آن خط را نشان می دهد.
توجه داشته باشید که در زمینه تخمین آماری، معمولاً دیتاها و رگرسیونی که آنها را توصیف می کنند به صورت مستقیم باهم مقایسه نمی شوند.
محاسبه ضریب تعیین
در مورد رگرسیون خطی ، برای محاسبه ضریب تعیین، کافی ست ضریب همبستگی پیرسون را به توان 2 برسانید. مقادیر این ضریب از 0 تا 1 متغیر مزایای استفاده از ضریب هم بستگی مزایای استفاده از ضریب هم بستگی است.
اگر عدد بدست آمده شما برابر با 0 یا نزدیک به 0 باشد، به معنای بدست آمدن نتایج غیرقابل پیشبینی و تصادفی است و اگر عدد بدست آمده مزایای استفاده از ضریب هم بستگی برابر با یک باشد و یا به یک نزدیک باشد نشان دهنده برخورد با بازاری است که در آن تمام قیمت ها روی خط قرار می گیرند.
ضریب تعیین نشان می دهد که چند درصد از حرکت قیمت ها بر اساس روند تعیین شده حرکت می کنند در حالی که بقیه درصد باقی مانده در اثر حرکت تصادفی مزایای استفاده از ضریب هم بستگی قیمت ها به وجود می آید.
محدودیت های استفاده
هر معیار آماری مزایا و معایب خود را دارد و ضریب تعیین نیز از این قاعده مستثنی نیست. برخی از معایب عبارتند از:
- میزان آن به تعداد معاملات بستگی دارد، معاملات کم باعث اغراق میزان شاخص ها می شود.
- برای بدست آوردن آن باید از محاسبات ریاضی پیچیده ای استفاده کرد.
- استفاده از آن به صورت انحصاری برای تخمین پروسه های خطی یا سیستم های معاملاتی همراه با مقادیر ثابت لات است.
کاربرد در سیستم های معاملاتی
در سیستم های معاملاتی برای تعیین مقادیر بدست آمده می توان از درصد استفاده کرد. بنابراین می توان گفت که از نظر تئوری، میزان 100% و یا مقدار نزدیک به آن نشان دهنده کیفیت بالای سیستم است.
سیستمی که کارایی بیشتر از 65 داشته باشد، عملکرد نسبتاً پایدارتری خواهد داشت.
در پایان، پس از تجزیه و تحلیل و مطالعه روند محاسبه ضریب تعیین ، می توان گفت که این ضریب یکی از معدود معیارهایی است که نظم منحنی را با استفاده از خط تعادل و مزایای ثبت نشده استراتژی، محاسبه می کند.
استفاده از R² آسان است زیرا دامنه مقادیر آن ثابت و در حد 1- تا 1+ تغییر می کند. مقادیر نزدیک به -1 ما را از روند منفی تعادل استراتژی آگاه می کند یا به ما هشدار می دهد.
اگر مقدار بدست آمده شما نزدیک به صفر باشد، نشان دهنده نبود ترند مورد نظر شما در بازار است و اگر ارزش بدست آمده +1 شود، نشان دهنده وجود روندی مثبت است .همانطور که می دانید، ضریب تعیین مانند هر نسبت دیگری، محدودیت ها یی دارد که باید به آن توجه کنید.
مزاياي استفاده از همبستگي ارزها RoboForex
مزاياي استفاده از همبستگي ارزها RoboForex: معاملهگران معمولا از همبستگي ارزها براي معاملات بين بازاري، پوشش ريسك يك معامله يا تنوع دادن به پرتفوي خود و مقابله با ريسك، استفاده ميكنند.
معاملات بينبازاري
شناسايي بازارهايي كه با هم نسبت نزديكي دارند ميتواند سودمند باشد زيرا اگر الگوها در يك بازار شفافيت نداشته باشند، الگوهاي شفافتري را ميتوان در يك بازار ديگر استفاده كرد تا به معاملهگان براي ثبت معاملات در بازار اول، كمك كرد.
بازار كالاها مخصوصا ميتواند براي همبستگي مفيد باشد و يك مثال از معاملات بين بازاري جهتارز USD/CAD و نفت ميباشد (مزاياي استفاده از همبستگي ارزها RoboForex).
پوشش ريسك يك معامله
پوشش ريسك يك معامله نيز يك دليل ديگر براي استفاده از همبستگي ارزها ميباشد (مزاياي استفاده از همبستگي ارزها RoboForex).
اگر شما پيشبيني ميكنيد كه قيمت دلار استراليا افزايش پيدا خواهد كرد و بخواهيد AUD/USD بخريد، پس خريد USD/CHF در كنار آن براي پوشش مقداري از ريسك دلار آمريكا ميتواند حركت عاقلانهاي باشد.
در زمان پوشش ريسك، مقادير پوينت و پيپ متفاوت ميتواند براي معاملهگر مزيت محسوب شود (مزاياي استفاده از همبستگي ارزها RoboForex).
تنوعدادن به پرتفوي و ريسك
معاملهگران همينطور ميتوانند از همبستگي ارزي براي تنوع دادن به پرتفوي خود و همينطور متنوعسازي ريسك استفاده كنند (مزاياي استفاده از همبستگي ارزها RoboForex).
دیدگاه شما